无理数的发现,引起了第一次数学危机。诱发的一个间接因素是之后“芝诺悖论”的出现,它更增加了数学家们的担忧:数学作为一门精确的科学是否还有可能?宇宙的和谐性是否还存在?第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。为了满足这些简单的度量需要,就要用到分数。于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。以q为分母的分数,可以用每一单位间隔分为q等分的点表示。于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。无理数的发现,是毕氏学派的最伟大成就之一,也是数学史上的重要里程碑。
无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共的量度单位的线段。由于毕氏学派关于比例定义假定了任何两个同类量是可通约的,所以毕氏学派比例理论中的所有命题都局限在可通约的量上,这样,他们的关于相似形的一般理论也失效了。
“逻辑上的矛盾”是如此之大,以致于有一段时间,他们费了很大的精力将此事保密,不准外传。但是人们很快发现不可通约性并不是罕见的现象。泰奥多勒斯指出,面积等于3、5、6、……17的正方形的边与单位正方形的边也不可通约,并对每一种情况都单独予以了证明。随着时间的推移,无理数的存在逐渐成为人所共知的事实。
诱发第一次数学危机的一个间接因素是之后“芝诺悖论”的出现,它更增加了数学家们的担忧:数学作为一门精确的科学是否还有可能?宇宙的和谐性是否还存在?
在大约公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,并且和狄德金于1872年绘出的无理数的现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微炒之处。
第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
西汉开国第一功臣萧何的结局,堪称中国古代权臣中罕见的“功成身退”样本。这位被详情
汉文帝刘恒(前203年—前157年)的登基,堪称西汉初年最富戏剧性的权力更迭详情
在华夏五千年的历史长河中,公主作为皇室血脉的象征,不仅承载着家族荣耀,更以美详情
在明末战火纷飞的年代,一位女将的名字与一种独特的兵器共同镌刻在历史长卷中——详情
在明末清初的乱世中,乌拉部公主阿巴亥以12岁稚龄嫁给43岁的努尔哈赤,这段充详情
在明朝初年的权力更迭中,朱棣与徐辉祖的矛盾堪称建文旧臣与永乐新朝碰撞的缩影。详情
杨坚与独孤曼陀的羁绊始于少年时期。两人自幼相识,定下婚约,杨坚曾深情许诺“此详情
在东汉末年的乱世风云中,韩嵩的名字与荆州牧刘表紧密相连。这位出身义阳的寒门学详情
在清朝九子夺嫡的激烈博弈中,一位瘸腿幕僚的名字始终与雍正帝的崛起紧密相连。邬详情
在战国七雄的权力棋局中,赵惠文王赵何堪称命运最跌宕的君主之一。这位18岁继位详情
在拿破仑帝国的璀璨星河中,安德烈·马塞纳是一颗无法忽视的将星。这位出身寒微的详情
在十六国时期那段波澜壮阔的历史中,前秦政权曾一度闪耀于北方大地,而苻坚作为前详情
在中国古代历史长河中,春秋时期(公元前770年—公元前476年)的战争呈现出详情
1912年4月14日,号称“永不沉没”的泰坦尼克号在北大西洋撞上冰山,最终沉详情
日本战国时代群雄并起,织田信长、丰臣秀吉、德川家康三人因卓越的军事才能与政治详情
在金庸笔下的《笑傲江湖》中,华山派掌门之女岳灵珊的命运始终笼罩在谎言与阴谋的详情
西汉初年,汉高祖刘邦与吕后之女鲁元公主与赵王张敖的婚姻,不仅是政治联姻的典型详情
吴承恩(约1504—1582年)与许仲琳(约1560—1630年),两位明代详情
韩愈(768年—824年),字退之,河南河阳(今河南孟州)人,世称“韩昌黎”详情
夜郎国作为中国西南地区历史长河中一颗璀璨的明珠,其疆域范围与现代地理的对应关详情
崇祯十五年(1642年)三月,锦州城头飘扬了二十余年的明军旗帜缓缓降下。六十详情
杜畿(163年~224年),字伯侯,京兆杜陵(今陕西西安)人,出身汉朝名门京详情
在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海详情
公元215年的合肥城下,一场被后世神话为"八百破十万"的详情
在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战详情
《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人详情
在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着详情
在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场详情
在中国三国时期的历史长河中,英雄辈出,战事频仍,其中一场以少胜多的经典战役—详情
长平之战,作为中国古代军事史上最早、规模最大、最彻底的大型歼灭战,其影响深远详情
在历史的长河中,总有一些战役以其独特的战略意义、惊心动魄的战斗过程和深远的历详情
战国时期,华夏大地上战火纷飞,其中邯郸之战无疑是这一系列战争中最为震撼的篇章详情
在中国古代历史上,战争是推动历史进程的重要力量。而在众多战争中,牧野之战无疑详情
在科学的世界里,有一种细胞被赋予了“不死”的名号,这就是海拉细胞。这种细胞源详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为“世界详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着“初中”,但这并不是他真详情
古人常说“不孝有三,无后为大”,而在皇权社会,皇帝不具备生育能力,可不仅仅是详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编详情
古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒详情
位于中国云南的九龙河瀑布群,被誉为“中国的尼亚加拉”,是中国最大的瀑布群。这详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流详情
湖北省,位于中国中部,素有“千湖之省”的美誉。全省湖泊众多,水域面积占总面积详情
在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清详情
在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以详情
在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对详情
在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的详情
王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作详情
《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。详情
在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物详情
在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记详情
在浩瀚的中华文化宝库中,“斯斯文文”这个词汇常被人们所提及。但是,它究竟是不详情
你知道“时时刻刻”这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的详情
在汉语成语的宝库中,“攘攘熙熙”以其形象生动的描绘,捕捉了人类社会繁忙混杂的详情