勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在这个定理的证明中,我们需要如下四个辅助定理:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
欧几里得证法
证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB2。
同理可证,四边形CKLE=ACIH=AC2。
把这两个结果相加,AB2+AC2=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB2+AC2=BC2,即a2+b2=c2。
此证明是于欧几里得《几何原本》一书第1.47节所提出的。
由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

在三国那个群星璀璨的暴力美学时代,吕布是一座不可逾越的高峰。他手持方天画戟,详情

在西汉初年的政治星空中,吕雉不仅是高踞权力顶端的女皇,更是吕氏家族的绝对核心详情

公元前118年的甘泉宫,秋风萧瑟,一场皇家狩猎正在进行。就在汉武帝的眼皮底下详情

在战国那片烽火连天的乱世棋盘上,若要选出两颗最耀眼的将星,非白起与吴起莫属。详情

在中国古代皇权至上的封建体系中,皇后作为“母仪天下”的象征,本应享有至高无上详情

在中国历史的长河中,独孤家族以其独特的地位和辉煌的成就,成为后世传颂的佳话。详情

作为西周末年与春秋初期鲁国的关键君主,鲁孝公(前795-前769年在位)的家详情

在三国群雄逐鹿的宏大叙事中,张飞以"万人敌"的勇武形象深详情

在明朝万历年间的深宫中,一场围绕储君之位的权力博弈持续了近三十年,而这场博弈详情

在楚汉相争的烽火岁月中,鸿门宴无疑是最具戏剧性的一幕。这场宴会不仅关乎刘邦的详情

春秋末期,楚国大夫伍奢因直言进谏遭楚平王猜忌,与长子伍尚一同被杀,次子伍子胥详情

在《水浒传》的浩瀚星空中,鲁智深无疑是最具生命力的星辰之一。提起“大闹五台山详情

在北宋画坛的星空中,崔白不仅是打破“黄家富贵”百年垄断的革新者,更是中国美术详情

在波斯阿契美尼德王朝的宏大编年史中,薛西斯一世的名字如同一颗划过天际的流星,详情

在北宋政和年间的权力巅峰,何执中不仅是以太傅身份致仕的一代权相,更是一位被政详情

在19世纪英国工业资本主义的轰鸣机器声中,查尔斯·狄更斯手持一支如手术刀般锋详情

1648年10月24日,随着《明斯特条约》与《奥斯纳布吕克条约》在威斯特伐利详情

川端康成的文学世界,是一座由女性肉体与灵魂构筑的精美庭院。他以诺贝尔文学奖的详情

在中华帝国的政治星空中,宰相一直是“一人之下,万人之上”的存在,但也正因如此详情

在华夏文明的黎明时分,当天地还处于一片蒙昧的“鸡子”状态时,一位巨人在黑暗中详情

在金庸先生的《鹿鼎记》里,建宁公主是那个敢爱敢恨、最终与韦小宝浪迹天涯的快乐详情

公元前284年,燕昭王任命乐毅为上将军,统帅秦、赵、韩、魏、燕五国联军,在济详情

在冷兵器与火器交织的古代战场,攻城与守城之战始终是最惨烈的战争形态。城墙内外详情

1615年5月,大阪城在德川家康联军的炮火中化为焦土,丰臣秀赖与淀殿(秀赖生详情

1573年1月25日,日本战国时代的远江国三方原台地,成为武田信玄与德川家康详情

公元221年,刚刚称帝的刘备以“为关羽复仇”为旗号,倾全国之力发动夷陵之战。详情

公元221年,刘备在成都称帝后,以“为关羽复仇”为旗号,亲率七十万大军东征孙详情

建安十三年(208年)的赤壁江面,火光映红了半边天空。这场以少胜多的战役不仅详情

公元222年,三国时期规模最大的战役之一——夷陵之战爆发。蜀汉昭烈帝刘备亲率详情

在华夏文明起源的宏大叙事中,阪泉之战与涿鹿之战犹如两枚关键拼图,共同构建起炎详情

公元前273年,战国中期的中原大地战火纷飞。在韩国华阳(今河南新郑北)的战场详情

在中国历史的长河中,三国鼎立的局面持续了数十年,魏、蜀、吴三国相互征伐,战火详情

1521年,明朝广东海道副使汪鋐指挥的屯门海战,是中国与西方殖民者的首次军事详情

在科学的世界里,有一种细胞被赋予了“不死”的名号,这就是海拉细胞。这种细胞源详情

在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别详情

一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为“世界详情

标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑详情

虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作详情

胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一详情

满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有详情

溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着“初中”,但这并不是他真详情

古人常说“不孝有三,无后为大”,而在皇权社会,皇帝不具备生育能力,可不仅仅是详情

息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到详情

赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编详情

古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响详情

彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红详情

在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电详情

在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中详情

在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗详情

在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺详情

在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒详情

位于中国云南的九龙河瀑布群,被誉为“中国的尼亚加拉”,是中国最大的瀑布群。这详情

北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽详情

鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流详情

湖北省,位于中国中部,素有“千湖之省”的美誉。全省湖泊众多,水域面积占总面积详情

在《红楼梦》的家族权力网络中,王子腾与贾宝玉的关系远非简单的舅甥血缘所能概括详情

在唐代诗歌的璀璨星河中,李白、杜甫、王维三位诗人以独特的艺术成就与精神追求,详情

在《封神演义》的宏大神话体系中,费仲与尤浑作为商纣王身边的奸佞之臣,其封神结详情

在《红楼梦》的悲剧叙事中,贾宝玉与林黛玉的爱情始终笼罩在封建礼教的阴影之下。详情

在《红楼梦》这座文学艺术的瑰宝殿堂中,晴雯宛如一颗璀璨而独特的星辰,以其鲜明详情

在道教浩瀚的神仙谱系中,慈航道人以独特的身份与深厚的功德占据着重要地位。作为详情

在罗贯中笔下的《三国演义》这部波澜壮阔的历史题材小说中,众多英雄豪杰争霸天下详情

在《水浒传》的浩荡江湖中,解珍以“两头蛇”的绰号和忠义双全的品格,成为梁山好详情

在古典名著《水浒传》的浩瀚星空中,邓飞以“火眼狻猊”的威名闪耀其中,位列梁山详情

在《水浒传》的江湖画卷中,杜兴以其独特的绰号“鬼脸儿”和跌宕起伏的人生经历,详情

黄信,古典名著《水浒传》中梁山泊一百单八将之一,绰号“镇三山”,位列地煞星,详情