科学成就
泡利矩阵
1927年他引入了2× 2泡利矩阵作为自旋操作符号的基础,由此解决了非相对论自旋的理论。泡利的结果引发了保罗·狄拉克发现描述相对论电子的狄拉克方程式。虽然狄拉克说,他发明了这些相同的矩阵自己独立的时候,没有受泡利的影响。

狄拉克在结合狭义相对论与量子力学的过程中,发明类似的,但更大的(4 × 4)旋转矩阵,用以解释费米子的自旋。
泡利原理
泡利最重要的成就是泡利原理
泡利不相容原理(Pauli’s exclusion principle 又称泡利原理、不相容原理):在原子的同一轨道中不能容纳运动状态完全相同的电子。一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子。如氦原子的两个电子,都在第一层(K层),电子云形状是球形对称、只有一种完全相同伸展的方向,自旋方向必然相反。每一轨道中只能容纳自旋相反的两个电子,每个电子层中可能容纳轨道数是n个,因此每层最多容纳电子数是2n个。
β衰变
1930年,泡利考虑了β衰变中能量不守恒的问题。12月4日,在一封给莉泽·迈特纳的信中,泡利向迈特纳等人提出了一个当时尚未观测到过的、电中性的、质量不大于质子质量1%的假想粒子来解释β衰变的连续光谱。1934年,恩里科·费米将这个粒子加入他的衰变理论并称之为中微子。首次证实中微子存在性的是1956年Frederick Reines和克莱德考恩的实验,两年半之后泡利才去世。在接到消息后,他回了一封电报:“感谢您的消息,对于懂得等待的人,一切终将了然。泡利。”
个人履历
命运给了泡利良好的生活、学习环境,他也自我证明了自己并未被命运宠坏。
上中学时,泡利就对当时鲜为人知的爱因斯坦的广义相对论产生了浓厚的兴趣,经常埋首研读。1918年中学毕业后就成为慕尼黑大学苏末菲教授的研究生。他的物理老师——著名的索末菲教授请他为德国正准备出版的百科全书写一篇关于相对论的文章,泡利居然完成了一部250页的专题论著,使教授大为惊讶。1921年,泡利获慕尼黑大学博士学位。后来,爱因斯坦看过泡利的论著后说:“任何一个人看到这样成熟和富于想象力的著作,都不能相信作者只是个21岁的学生。”泡利在学生时代就已展露了不同凡响的科学才华,引起了一些著名物理学家的注意。

大学毕业后,泡利先后给马克斯·玻恩和尼尔斯·玻尔当助手。这两位当时站在世界物理学前沿,而后又都获得诺贝尔奖的科学家后来说到泡利时,都对他那寻根究底追本溯源一丝不苟的钻研精神和他那闪现灵敏的思想火花记忆犹新。泡利总是有与众不同的见解而且绝不轻易为别人说服,他好争论但绝不唯我独尊。当他验证了一个学术观点并得出正确结论后,不管这个观点是他自己的还是别人的,他都兴奋异常,如获至宝,而把争论时的面红耳赤忘得一干二净。正是他这种远世俗重真理的科学态度,赢得了索末菲、玻恩和玻尔的厚爱。他也从这些名师那里学到了富有教益的思维方法和实验技巧,为他后来的科研攀登打下了坚实的基础,终于以发现量子的不相容原理而迈入世界著名物理学家的行列。
1925年春,从汉堡大学传出一个令世界物理学界瞩目的消息:一个新的物理学原理——不相容原理诞生了。它的提出者正是当时在这个大学任教的、尚名不见经传的年轻学者——25岁的泡利。
泡利的不相容原理可以这样表述:一个原子中,任何两个轨道电子的4个量子数不能完全相同。
不相容原理并没有立刻呈现出它的价值,可是泡利的才华却因此而得到社会的承认。1928年,他被任命为苏黎世联邦工学院教授;1935年,他应邀前往美国讲学。1940年在美国普林斯顿高级研究所工作。此间,他还以科学的预见预言了中微子的存在,获得普朗克奖章。直到泡利提出不相容理论20年后的1945年,这个理论的正确性和它产生的广泛深远的影响才得以确认。不相容原理被称为量子力学的主要支柱之一,是自然界的基本定律,它使得当时所知的许多有关原子结构的知识变得条理化。人们可以利用泡利引入的第四个、表示电子自旋的量子数,把各种元素的电子按壳层和支壳层排列起来,并根据元素性质主要取决于最外层的电子数(价电子数)这一理论,对门捷列夫元素周期律给以科学的解释。
他把一生投入了科学研究,34岁才结婚。
1945年,泡利因他在1925年即25岁时发现的“不相容原理”,获诺贝尔物理学奖。
1958年,不幸病逝。
泡利于1946年加入美国国籍,是美国科学发展协会的创始人之一。
泡利的主要成就是在量子力学、量子场论和基本粒子理论方面,特别是泡利不相容原理的建立和β衰变中的中微子假说等,对理论物理学的发展做出了重要贡献。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

在东亚历史的长河中,圣德太子作为日本飞鸟时代的核心人物,其性别问题因现代文化详情

1644年的春天,北京城的空气中弥漫着绝望与煤烟的味道。当崇祯皇帝朱由检在煤详情

在战国那个人命如草芥、权谋如鲜血般猩红的时代,芈戎与芈月的关系绝非寻常的姐弟详情

在朝鲜王朝波澜壮阔的历史长河中,中宗李怿与慎氏的爱情故事宛如一颗璀璨却又带着详情

在荧幕的喧嚣中,纪晓岚与和珅是针尖对麦芒的“欢喜冤家”,一个铁齿铜牙戏弄权奸详情

在清宫剧的喧嚣中,雍正往往被刻画成阴鸷冷血的权谋家,而年世兰则成了依仗兄权、详情

在那个金戈铁马、烽火连天的战国末期,秦国东出函谷关的滚滚车轮中,桓齮无疑是最详情

公元前66年,长安城笼罩在肃杀的寒风中。汉宣帝刘病已(即位后改名刘询)一纸诏详情

在康熙帝漫长的后宫生涯中,妃嫔如云,仅史书留名者便逾六十人。然而,若论及“眷详情

同治九年七月二十六日,南京的空气中弥漫着一种诡异的燥热。两江总督马新贻在校场详情

在隋唐演义的平行宇宙里,力量的物理法则被彻底颠覆。如果说项羽是“力拔山兮气盖详情

在人类货币演进的漫漫长河中,北宋时期的交子宛如一颗耀眼的明星,以其独特的创新详情

在元代科技史的璀璨星河中,郭守敬的名字如同一颗耀眼的恒星,以其在天文学、数学详情

唐朝末年,曾经辉煌一时的大唐帝国逐渐走向衰落,政治腐败、经济崩溃、社会矛盾激详情

东汉第三位皇帝汉章帝刘炟(56年—88年4月9日),以“帝王中的长者”之名载详情

洪武二十四年(1391年),27岁的黄观以"三元六首"的详情

在山西吕梁市文水县的广袤大地上,隐匿着一座承载着千年历史风云的陵墓——武士彟详情

在唐朝波澜壮阔的历史长河中,武周代唐的动荡岁月犹如一场暴风雨,无情地席卷了李详情

巨鹿之战作为中国历史上以少胜多的经典战役,长久以来被赋予诸多传奇色彩,其中“详情

在唐代传奇的璀璨星河中,《霍小玉传》以一曲凄绝的爱情悲歌,塑造出中国文学史上详情

在西汉未央宫的深墙之内,薄皇后的一生是一场早已写好结局的悲剧。作为汉景帝刘启详情

茶,这片源自神农架的灵芽,绝非仅仅是一种解渴的植物饮料。它是中国历史的见证者详情

在明末辽东的棋盘上,有一座城市的名字如同一把铁锁,死死扣住通往帝国心脏的咽喉详情

在冷兵器与火器交织的古代战场,攻城与守城之战始终是最惨烈的战争形态。城墙内外详情

1615年5月,大阪城在德川家康联军的炮火中化为焦土,丰臣秀赖与淀殿(秀赖生详情

1573年1月25日,日本战国时代的远江国三方原台地,成为武田信玄与德川家康详情

公元221年,刚刚称帝的刘备以“为关羽复仇”为旗号,倾全国之力发动夷陵之战。详情

公元221年,刘备在成都称帝后,以“为关羽复仇”为旗号,亲率七十万大军东征孙详情

建安十三年(208年)的赤壁江面,火光映红了半边天空。这场以少胜多的战役不仅详情

公元222年,三国时期规模最大的战役之一——夷陵之战爆发。蜀汉昭烈帝刘备亲率详情

在华夏文明起源的宏大叙事中,阪泉之战与涿鹿之战犹如两枚关键拼图,共同构建起炎详情

公元前273年,战国中期的中原大地战火纷飞。在韩国华阳(今河南新郑北)的战场详情

在中国历史的长河中,三国鼎立的局面持续了数十年,魏、蜀、吴三国相互征伐,战火详情

在科学的世界里,有一种细胞被赋予了“不死”的名号,这就是海拉细胞。这种细胞源详情

在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别详情

一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为“世界详情

标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑详情

虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作详情

胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一详情

满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有详情

溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着“初中”,但这并不是他真详情

古人常说“不孝有三,无后为大”,而在皇权社会,皇帝不具备生育能力,可不仅仅是详情

息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到详情

赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编详情

古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响详情

彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红详情

在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电详情

在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中详情

在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗详情

在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺详情

在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒详情

位于中国云南的九龙河瀑布群,被誉为“中国的尼亚加拉”,是中国最大的瀑布群。这详情

北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽详情

鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流详情

湖北省,位于中国中部,素有“千湖之省”的美誉。全省湖泊众多,水域面积占总面积详情

在《红楼梦》的家族权力网络中,王子腾与贾宝玉的关系远非简单的舅甥血缘所能概括详情

在唐代诗歌的璀璨星河中,李白、杜甫、王维三位诗人以独特的艺术成就与精神追求,详情

在《封神演义》的宏大神话体系中,费仲与尤浑作为商纣王身边的奸佞之臣,其封神结详情

在《红楼梦》的悲剧叙事中,贾宝玉与林黛玉的爱情始终笼罩在封建礼教的阴影之下。详情

在《红楼梦》这座文学艺术的瑰宝殿堂中,晴雯宛如一颗璀璨而独特的星辰,以其鲜明详情

在道教浩瀚的神仙谱系中,慈航道人以独特的身份与深厚的功德占据着重要地位。作为详情

在罗贯中笔下的《三国演义》这部波澜壮阔的历史题材小说中,众多英雄豪杰争霸天下详情

在《水浒传》的浩荡江湖中,解珍以“两头蛇”的绰号和忠义双全的品格,成为梁山好详情

在古典名著《水浒传》的浩瀚星空中,邓飞以“火眼狻猊”的威名闪耀其中,位列梁山详情

在《水浒传》的江湖画卷中,杜兴以其独特的绰号“鬼脸儿”和跌宕起伏的人生经历,详情

黄信,古典名著《水浒传》中梁山泊一百单八将之一,绰号“镇三山”,位列地煞星,详情