莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。他以旺盛的精力投入研究,在俄国的14年中,他在分析学、数论和力学方面作了大量出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。1766年他又回到了圣彼得堡。1783年9月18日于俄国圣彼得堡去世。
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年轻的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉就写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
在数学领域内,18世纪可正确地称为欧拉世纪。欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。
数学史上公认的4名最伟大的数学家分别是:阿基米德、牛顿、欧拉和高斯。阿基米德有“翘起地球”的豪言壮语,牛顿因为苹果闻名世界,高斯少年时就显露出计算天赋,唯独欧拉没有戏剧性的故事让人印象深刻。
然而,几乎每一个数学领域都可以看到欧拉的名字——初等几何的欧拉线、多面体的欧拉定理、立体解析几何的欧拉变换公式、数论的欧拉函数、变分法的欧拉方程、复变函数的欧拉公式……欧拉还是数学史上最多产的数学家,他一生写下886种书籍论文,平均每年写出800多页,彼得堡科学院为了整理他的著作,足足忙碌了47年。他的著作《无穷小分析引论》、《微分学》、《积分学》是18世纪欧洲标准的微积分教科书。欧拉还创造了一批数学符号,如f(x)、Σ、i、e等等,使得数学更容易表述、推广。并且,欧拉把数学应用到数学以外的很多领域。
法国大数学家拉普拉斯曾说过一句话——读读欧拉,他是所有人的老师。中国科学院数学与系统科学研究院研究员李文林表示:“欧拉其实是大家很熟悉的名字,在数学和物理的很多分支中到处都是以欧拉命名的常数、公式、方程和定理,他的探索使得科学更接近我们现在的形态。”
恩格斯曾说,微积分的发明是人类精神的最高胜利。1687年,牛顿在《自然哲学数学原理》一书中首次公开发表他的微积分学说,几乎同时,莱布尼茨也发表了微积分论文,但牛顿、莱布尼茨创始的微积分基础不稳,应用范围也有限。18世纪一批数学家拓展了微积分,并拓广其应用产生一系列新的分支,这些分支与微积分自身一起形成了被称为“分析”的广大领域。李文林说:“欧拉就生活在这个分析的时代。如果说在此之前数学是代数、几何二雄并峙,欧拉和18世纪其他一批数学家的工作则使得数学形成了代数、几何、分析三足鼎立的局面。如果没有他们的工作,微积分不可能春色满园,也许会打不开局面而荒芜凋零。欧拉在其中的贡献是基础性的,被尊为‘分析的化身’。”
中国科学院数学与系统科学研究院研究员胡作玄说:“牛顿形成了一个突破,但是突破不一定能形成学科,还有很多遗留问题。”比如,牛顿对无穷小的界定不严格,有时等于零有时又参与运算,被称为“消逝量的鬼魂”,当时甚至连教会神父都抓住这点攻击牛顿。另外,由于当时函数有局限,牛顿和莱布尼茨只涉及到少量函数及其微积分的求法。而欧拉极大地推进了微积分,并且发展了很多技巧。
“在分析之前,数学主要是解决常量、匀速运动问题。18世纪工业革命时,以蒸汽机纺织机等机械为主体技术得到广泛运用,但如果没有微积分、没有分析,就不可能对机械运动与变化进行精确计算。”李文林表示,到为止,微积分和微分方程仍然是描写运动的最有效工具,教科书中陈述的方法,不少属欧拉的贡献。更重要的是,牛顿、莱布尼茨微积分的对象是曲线,而欧拉明确地指出,数学分析的中心应该是函数,第一次强调了函数的角色,并对函数的概念作了深化。
变分法来源于微积分,后来由欧拉和拉格朗日从不同的角度把它发展成一门独立学科,用于求解极值问题。而变分学起源颇富戏剧性——1696年,欧拉的老师、巴塞尔大学教授约翰·伯努利提出这样一个问题,并向其他数学家挑战:设想一个小球从空间一点沿某条曲线滚落到(不在同一垂直线上的)另外一点,问什么形状的曲线使球降落用时最短。这就是著名的“最速降线问题”,半年之后仍没人解出,于是伯努利更明确地表示“即使是那些对自己的方法自视甚高的数学家也解决不了这个问题”。有人说他在影射牛顿,因为伯努利是莱布尼茨的追随者,而莱布尼茨和牛顿正因为微积分优先权的问题在“打仗”,并导致欧洲大陆和英国数学家的分裂。
当时牛顿任伦敦造币局局长。有一天他收到一个法国朋友转寄的“挑战书”,于是吃过晚饭后挑灯夜战,天亮前解了出来,匿名发表在剑桥大学《哲学会刊》。虽是匿名,但约翰·伯努利看到之后惊呼:“从这锋利的爪我认出了这头雄狮。”后来伯努利兄弟和莱布尼茨也都解出了这个问题,发表在同一期刊物上。
在这个问题中,变量本身就是函数,因此比微积分的极大极小值问题更为复杂。这个问题和其他一些类似问题的解决,成为变分法的起源。欧拉找到了解决这类问题的一般方法,教科书中变分法的基本方程就叫欧拉方程。
欧拉13岁上大学时,约翰·伯努利已经是欧洲很有名的数学家,伯努利后来对欧拉说,“我介绍高等分析的时候,它还是个孩子,而你正在将它带大成人。”
李文林说:“除了分析,很多数学领域都绕不开欧拉的名字。如数论,高斯说数学是科学的皇后,而数论是数学的皇后,其难度和地位可想而知。”代数数论的形成和费马大定理有很深的关系。费马17世纪提出的一个猜想——方程,当n≥3时没有整数解。费马猜想也称费马大定理,费马在提出这一猜想的同时,在纸边写了一句话宣称:“我已找到了一个奇妙的证明,但书边空白太窄,写不下。”于是费马的证明已成千古之谜。此后经过300年,直到1993年费马大定理才被英国数学家最终解决。整个18世纪,数学家们都想解决这个猜想,但只有欧拉作出了唯一的成果,证明了n=3的情况,成为费马大定理研究的第一个突破。
欧拉是解析数论的奠基人,他提出欧拉恒等式,建立了数论和分析之间的联系,使得可以用微积分研究数论。后来,高斯的学生黎曼将欧拉恒等式推广到复数,提出了黎曼猜想,至今没有解决,成为向21世纪数学家挑战的最重大难题之一。
“在几何方面,欧拉解决了哥尼斯堡七桥问题,这也成为图论、拓扑学的滥觞。”李文林说。哥尼斯堡曾是德国城市,后属苏联。普雷格尔河穿城而过,并绕流河中一座小岛而分成两支,河上建了7座桥。传说当地居民想设计一次散步,从某处出发,经过每座桥回到原地,中间不重复。李文林说:“这就是今天的‘一笔画’问题,但在当时没人能解决。欧拉将这个问题变成一个数学模型,用点和线画出网络状图,证明这种走法不存在,解决了哥尼斯堡七桥问题。对此类问题的讨论研究,事实上引导了图论和拓扑学的发展。”
拓扑学中的欧拉示性数也溯源于欧拉1752年提出的关于凸多面体的一条定理:在一凸多面体中,顶点数-棱边数+面数=2。陈省身曾指出欧拉示性数是很多问题和解决办法的来源,对几何学的影响是根本性的。李文林说:“因为数学好,欧拉得以解决很多其他领域的问题。物理、力学、天文学、航海、大地测量等等到处都有欧拉的贡献,他是典型的全才数学家。牛顿、莱布尼茨发明的微积分可以说是‘原生态’,而欧拉18世纪写的文章我们现在依然能读,可以说欧拉等人使得数学特别是分析向现代形式发展。”
欧拉是历史上最多产的数学家。瑞士自然科学基金会组织编写《欧拉全集》,计划出84卷,每卷都是4开本(一张报纸大小)。如果按每本300页计算,欧拉从18岁开始每天得写1张半纸。然而这些只是遗存的作品,欧拉的手稿在1771年彼得堡大火中还丢失了一部分。欧拉曾说他的遗稿大概够彼得堡科学院用20年。但实际上在他去世后的第80年,彼得堡科学院院报还在发表他的论著。
“天才在于勤奋,欧拉就是这条真理的化身。”李文林表示,“很多科学家都很勤奋,而欧拉最为典型。他失明后的十多年都是在完全看不见的情况下作研究。欧拉心算能力很强,可以通过口述让别人记录。有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案。”
“高斯的神童故事虽然有趣,但并不是每个人都是神童。即使是身为神童的高斯,其勤奋也是出名的。可以说凡有大成就的数学家必有大勤奋。”李文林举例说,被誉为“现代分析之父”的德国数学家魏尔斯特拉斯也是异常勤奋。大学毕业后他在一所偏僻的中学任教14年,教数学、德语、书法、体育,每天晚上以惊人的毅力坚持研究,当时工资很低,连投稿的邮费都没有。后来由于偶然的机会他的研究论文被德国数学家克莱尔创办的数学杂志发表出来(克莱尔杂志以帮助没出名的年轻学子发表创新成果而著称),震惊了欧洲科学界。
胡作玄认为,欧拉的成功说明了一个人的潜能。“高斯曾说,要像欧拉那样做,我的眼睛也要瞎了。一个人要想做事是没有问题的,只是现在社会比较复杂,我们应该为科学而科学,为艺术而艺术。”
除了做学问,欧拉还很有管理天赋,他曾担任德国柏林科学院院长助理职务,并将工作做得卓有成效。李文林说:“有人认为科学家尤其数学家都是些怪人,其实只不过数学家会有不同的性格、阅历和命运罢了。牛顿、莱布尼茨都终身未婚,欧拉却不同。”欧拉喜欢音乐、生活丰富多彩,结过两次婚,生了13个孩子,存活5个,据说工作时往往儿孙绕膝。他去世的那天下午,还给孙女上数学课,跟朋友讨论天王星轨道的计算。突然说了一句“我要死了”,说完就倒下,停止了生命和计算。
回顾欧拉的一生,李文林认为:“虽然他20岁离开瑞士,一直没有回去过,但他却是一个爱国者,至死没有改变国籍。所以现在我们还能说他是瑞士数学家。”
“牛顿、莱布尼茨、欧拉、拉格朗日、拉普拉斯都是全面的数学家。后来随着科学的发展,全才越来越少,有人说庞加莱也许是最后一个。”但是数学并不会因此枯萎,李文林说:“18世纪末曾有一种悲观主义在数学家中蔓延,连拉格朗日这样的大数学家都认为数学到头了,但事实相反,19世纪初非欧几何的发现、群论的创立以及微积分严格化的突破,使数学获得了意想不到的蓬勃发展。现代数学,特别是跟计算机结合起来之后,肯定还会有新的形态。”
从2008年以来,一种名为“数独”的填数游戏风靡全球。这种游戏规则极其简单,玩法却变化多端,令全世界的男女老少为之痴狂。2004年,英国《泰晤士报》开风气之先,在报上公布“数独”题目娱乐大众。从那时起,短短几年光景,如今全世界大约有60个国家的350多家报纸几乎天天刊登“数独”游戏题目。近两年来,中国各地的日报、晚报后起直追,划出专门的版面,天天报道有关“数独”竞赛的消息,刊载“数独”题目。各国各大城市纷纷举办“数独”竞赛。在英国,“数独 ”竞赛上了电视台的黄金档节目。2006年在意大利举行了第一届世界“数独”锦标赛,获奖者被认为“智商超群”,在全世界备受瞩目。
不少“数独”爱好者都知道,这种游戏的普及多亏了一位名叫戈尔德的新西兰人。此人曾在香港担任法官15年,1 996年退休以后的一次旅行途经日本,在机场偶然发现介绍“数独”游戏的小册子。戈尔德立刻着迷,从此专注于“数独” 游戏的开发推广,他也因此而发了大财。但鲜为人知的是,“数独”游戏本身虽非数学问题,但是其来源却是一种被称之为“ 拉丁方阵”的古老数学问题,最先对它展开研究的是18世纪传奇而又高产的大数学家莱昂纳德·欧拉。
对于“拉丁方阵”的研究,在欧拉的学术范围内并不占据主要位置。这个问题源自于当年普鲁士国王腓特烈为他的仪仗队排阵。国王有一支由36名军官组成的仪仗队,军官分别来自6支部队,每支部队中都有上校、中校、少校、上尉、中尉、少尉各一名。国王要求这36名军官排成6行6列的方阵,每一行,每一列的6名军官必须来自不同的部队,并且军衔各不相同。问题看似简单,腓特烈绞尽脑汁却怎么也排列不出来,于是向著名的数学家欧拉求教。欧拉研究之后告诉国王,不必枉费心机,因为这个问题根本无解。欧拉之后,很多数学家开始研究“拉丁方阵”,并留下很多这方面的定理。
“欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样。”(阿拉戈说),这句话对欧拉那无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为“分析的化身”。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想象力。
欧拉到底出了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。彼得堡学院为了整理他的著作整整花了47年。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。
据统计,欧拉一生平均每年发表八百页的学术论文,内容涵盖多个学术范畴。1911年,数学界系统地开始出版欧拉的著作,并定名为《欧拉全集》(Opera Omnia),全集计划出84卷,迄今已上架者已有80卷,剩余还剩下4卷正在筹备中。平均每卷厚达五百多页,重约四磅。预计《欧拉全集》全部出齐时约重三百磅。
欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年问世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。
那时代数学和三角学一在一个较低的水平上系统化并扩展了。特别是后者已经基本完善。欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。
作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。
当一个真正伟大的算法学家像印度的罗摩奴阇一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。
在谈到欧拉平静而有趣的生活之前,我们必须介绍一下他那个时代的两个环境因素,这些因素促进了他的惊人的活跃,并对他的活动有指导作用。
在18世纪的欧洲,大学不是学术研究的主要中心。假如没有古典派的传统及其对科学研究的可以想象的敌意,大学本来是可以成为主要中心的。数学对于古代人足够严密,受到重视;而物理学比较新,受到人们的怀疑。此外,在当时的大学里,人们希望数学家把他的大部分力量放在基础教学上。至于学术研究,如果搞的话,那将是毫无益处的奢侈,就像今天在一般的美国高等学校里那样。那时候英国大学的研究员们能够把他们选择的课题搞得相当好。然而,他们很少愿意选择什么课题,反正搞成了什么或没搞成什么都不会对他们的面包和黄油产生影响。在如此的松弛,或者说公开的敌意之下,根本没有什么好理由来解释为什么那些大学本来应该在科学发展中起带头作用,而事实上却没有起到。
这个带头的责任有得到慷慨或有远见的统治者所资助的各个皇家科学院承担了。普鲁士腓特烈大帝和俄国叶卡捷琳娜女皇慷慨地给了数学以无法报偿的资助。他们使得数学的发展有可能在整整一个世纪之中处于科学史上一个最活跃的时期。对欧拉来说,是柏林和圣彼得堡提供了数学创作的力量。而这两个创造力的中心都应当把它们对欧拉的激励归功于莱布尼茨(Leibniz)不断进取的雄心。是莱布尼茨(Leibniz)起草过规划的这两个科学院给欧拉提供了成为历史上最多产的数学家的机会。因而,在某种意义上说,欧拉是莱布尼茨(Leibniz)的苗裔。
柏林科学院由于缺乏头脑而日渐衰败已有40年,欧拉在腓特烈大帝的鼓励下给了它有力的冲击,使它再次有了生气。彼得大帝在世时没来得及按照莱布尼茨(Leibniz)的规划建立起来的圣彼得堡科学院,则由他的继位者建立起来了。
这两个科学院不像今天一些科学院那样以鉴定精心撰写的优秀著作,授予院士资格为主要职责。它们是研究机构,雇佣院士进行科学研究。薪水和津贴金很优厚,使人足以保证本身家庭的舒适生活。欧拉的家属一度不少于18个人,他还是足以维持他们都过着丰裕的生活。使18世纪院士生活具有吸引力的最后一点是,他的孩子们只要有任何一点才能,都肯定会得到很好的施展机会。
接下来我们就会看到对欧拉的丰硕数学成果具有决定性影响的第二个因素。提供财政支持的统治者很自然地会希望他们的金钱除开抽象的文化之外再多换到些东西。但必须强调的是,一旦统治者的投资得到了适当的报偿,他们就不再坚持要受雇佣的人把剩余时间也花到"生产性"工作上了。欧拉、拉格朗日和其他院士们都可以自由地做他们乐意做的工作。没有任何明显的压力来迫使谁搞出点什么能被政府直接利用的实际成果。18世纪统治者们比今天许多研究院院长更明智的是让科学按自己的规律发展的,只不过偶尔提到他们眼前需要什么。他们似乎本能地意识到了,只要不时作个恰当的暗示,所谓的"纯粹"研究就会把他们期待的紧迫实际问题作为副产品搞出来。
这个笼统的说法有一个重要的例外,它既不证明,也不否定这个规律。刚巧在欧拉的时代,数学研究中悬而未决的问题正好与海洋霸权这个当时也许是第一等的实际问题联系在一起。航海技术胜过所有其他对手的国家必然会控制海洋。而航海的首要问题是在离岸数百海浬的大海中精确地确定舰船的位置,以使之比敌手更快地航抵海战的地点(不幸,只是为了这个)。正如众所周知的,英国控制了海洋。它能做到这一点,在很大程度上是由于它的航海家在18世纪能够把天体力学中的纯数学研究成果加以实际应用。这样一项实际应用正与欧拉直接有关。现代航海的奠基人当是牛顿(Newton),尽管他本人并不曾为这个问题费过脑筋,也从不曾(就人们迄今所知)踏上过一艘舰船的甲板。确定海上船的位置要靠观测天体(在特别的航行中有时这要包括木星的卫星)。牛顿(Newton)万有引力定律表明必要时以充分的耐心可以预先算出百年之内的行星位置和月相盈亏之后,希望控制海洋的那些人便安排航海天文历的计算人员下苦功编制行星未来位置的表格。
在这一项很实用的事业中,月亮引出了特别棘手的问题,即牛顿定律彼此吸引的三个星体的问题。当我们进入20世纪的时候,这个问题还要重现许多次。欧拉是第一个为这个月球问题提出一种可以计算的解法(月球理论)的人。这三个相关星体是月亮、地球和太阳。虽然关于这个问题在这里谈不了什么,要推到后几章去,但我们可以说,这个问题是整个数学范畴内最难的问题之一。欧拉不曾具体解答这个问题,但他的近似计算方法(今天被更好的方法代替)具有充分的实用价值,足以使英国的计算人员为英国海军部算出月球表了。为此,计算者获得5000英镑(当时这是相当大的一笔款子),欧拉因其方法而得到300英镑的奖金。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
在华夏文明的神话谱系中,炎帝与黄帝的并立不仅是两位部落首领的传说,更是中华文详情
在华夏文明的璀璨星河中,宋朝以319年的国祚、18位帝王的更迭,勾勒出中国封详情
五代十国时期,南唐名臣韩熙载的一生跌宕起伏,他的结局更似一首悲怆的挽歌,在历详情
公元220年的成都城内,一场关乎蜀汉政权存续的隐秘博弈悄然落幕。养子刘封在刘详情
在清世宗雍正帝的铁腕统治下,直隶总督李绂的生死存亡成为检验皇权与清流博弈的试详情
在《三国演义》的叙事框架中,淳于琼以"乌巢酒徒"的形象定详情
在秦末汉初的烽烟中,一位出身沛县丰邑的布衣老者,以七十五载春秋见证了从泗水亭详情
在朝鲜王朝十二代君主更迭的权力漩涡中,文定王后尹氏以“继后”身份执掌中宫四十详情
樊哙,西汉初年的著名将领,以勇猛善战著称,与汉高祖刘邦有着深厚的交情。然而,详情
在北宋政坛的风云变幻中,王钦若推荐寇准为副宰相这一事件,宛如一颗投入平静湖面详情
唐懿宗李漼(833-873)的统治,恰似一曲王朝衰亡的挽歌。作为唐朝第十八位详情
在唐代文学星空中,李白与高适的关系始终笼罩着"梁园三剑客"详情
在唐代历史长河中,"永徽之治"犹如一座承前启后的桥梁,既详情
在唐代浩如烟海的诗篇中,马周的《凌朝浮江旅思》如同一叶扁舟,载着寒微文人的孤详情
在苏州城外的桃花坞深处,54岁的唐伯虎在寒风中写下绝笔"生在阳间有详情
在唐代诗坛的璀璨星河中,苏味道或许并非最耀眼的那颗,但他以一首《正月十五夜》详情
在战国时期波谲云诡的权力斗争中,秦宣太后芈八子与男宠魏丑夫的故事,犹如一面棱详情
在中国民间传说中,"孟姜女哭长城"的故事以凄美的爱情与反详情
闽越国作为战国至西汉时期活跃于东南沿海的古国,其疆域范围远超现代福建省行政区详情
浅井茶茶的人生轨迹与日本战国时代的血腥动荡深度交织。作为近江大名浅井长政与织详情
在中国古代哲学思想的长河中,王守仁(王阳明)的“知行合一”思想宛如一颗璀璨的详情
笈多王朝作为中世纪印度历史上一个重要的封建王朝,在印度政治、经济、文化发展进详情
公元215年的合肥城下,一场被后世神话为"八百破十万"的详情
在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战详情
《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人详情
在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着详情
在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场详情
在中国三国时期的历史长河中,英雄辈出,战事频仍,其中一场以少胜多的经典战役—详情
长平之战,作为中国古代军事史上最早、规模最大、最彻底的大型歼灭战,其影响深远详情
在历史的长河中,总有一些战役以其独特的战略意义、惊心动魄的战斗过程和深远的历详情
战国时期,华夏大地上战火纷飞,其中邯郸之战无疑是这一系列战争中最为震撼的篇章详情
在中国古代历史上,战争是推动历史进程的重要力量。而在众多战争中,牧野之战无疑详情
在浩瀚的历史长河中,有些事件因其复杂性和争议性而被历史学家们避而不谈。怛罗斯详情
在科学的世界里,有一种细胞被赋予了“不死”的名号,这就是海拉细胞。这种细胞源详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为“世界详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着“初中”,但这并不是他真详情
古人常说“不孝有三,无后为大”,而在皇权社会,皇帝不具备生育能力,可不仅仅是详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编详情
古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒详情
位于中国云南的九龙河瀑布群,被誉为“中国的尼亚加拉”,是中国最大的瀑布群。这详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流详情
湖北省,位于中国中部,素有“千湖之省”的美誉。全省湖泊众多,水域面积占总面积详情
在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清详情
在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以详情
在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对详情
在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的详情
王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作详情
《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。详情
在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物详情
在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记详情
在浩瀚的中华文化宝库中,“斯斯文文”这个词汇常被人们所提及。但是,它究竟是不详情
你知道“时时刻刻”这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的详情
在汉语成语的宝库中,“攘攘熙熙”以其形象生动的描绘,捕捉了人类社会繁忙混杂的详情