1937年4月,即距今整整80年前的春天,31岁的意大利天才物理学家埃托雷·马约拉纳(Ettore Majorana)在本国的 Nuovo Cimento期刊上发表了他的最后一篇学术论文,题目是 Teoria simmetrica dell’elettrone e del positrone(英文翻译:Theoryof the symmetry of electrons and positrons,即“一个关于正反电子对称性的理论”)。
在这篇让后人追捧至今的文章中,马约拉纳指出了一种新型的物质粒子:马约拉纳型费米子,即反粒子就是其自身的费米子。他的具体表述如下(英文翻译来自意大利著名物理学家Luciano Maiani。):
“…there is now no need toassume the existence of antineutron or antineutrinos. The latter particles areindeed introduced in the theory of positive beta-ray emission; the theory,however, can be obviously modified so that the beta-emission, both positive andnegative, is always accompanied by the emission of a neutrino.”
“…现在没有必要假设反中子或者反中微子的存在。后者其实是在正贝塔射线的放射理论中被提出来的。不过很显然,可以修改这一理论,使得正反贝塔射线的放射过程总是伴随着中微子的射出。”
上图显示的是目前已知的基本粒子,其中夸克和轻子属于费米子,自旋量子数等于1/2;而希格斯粒子和力的传播子则属于玻色子,相应的自旋量子数分别为整数0和1
换句话说,中微子的反粒子可以是它自己,因此用来区分正反电子和正反中微子的“轻子数”(lepton number)不再是守恒量,即无法再定义中微子的轻子数等于+1而反中微子的轻子数等于-1。这是马约拉纳型中微子与狄拉克(Dirac)型中微子的本质区别,因为后者的反粒子是不同的、携带相反轻子数的粒子。对于诸如光子或者pion介子这样的玻色子而言,它的反粒子就等于它自身。但是除了中微子外,其他基本的费米子(如夸克和电子)都携带电荷,因此它们与它们的反粒子是两类不同的粒子,无法等价。只有电中性的中微子在不违背电荷守恒的前提下有可能与它的反粒子完全不可区分,而这一点正是马约拉纳中微子的特性。果真如此的话,如何通过实验来证实中微子的马约拉纳属性呢?
限于目前的实验技术,最有可能确认中微子的马约拉纳性质的轻子数不守恒过程是某些原子核的所谓“无中微子双贝塔衰变”(neutrinoless double-betadecay,简记为 衰变)过程,例如近年来被研究得较多的和衰变。这类过程是美国物理学家Wendell Furry在1939年率先提出来的。正如著名物理学家MariaGoeppert Mayer在1935年所指出的那样,一个原子核的“双贝塔衰变”过程(简记为)相当于该原子核内部的两个中子分别发生了“单贝塔衰变”过程,结果不仅产生了两个质子和两个电子,还放射出两个电子型反中微子。但两个质子可以属于另一个稍轻的原子核,于是整个过程就表现为一个原子核转化成另一个原子核,再加上两个电子和两个反中微子,例如。但倘若中微子是马约拉纳粒子,那么末态就可能不再出现反中微子或者中微子,因为此时马约拉纳中微子可以作为虚粒子在两个“单贝塔衰变”过程之间相互交换,即可能发生轻子数不守恒的衰变。
与过程的连续能谱相比,理论上衰变的可观测信号是末态两个电子的能量谱线呈现出单一的峰值(下图所示的能谱并非单值,原因在于已经假设了实际测量数据的统计误差)。在实验中确定这样的稀有信号是极其困难的,这也是为什么多年来国际上多个实验组一直未能观测到令人信服的过程的原因之一。当然,这类过程也不可避免地受到有效的马约拉纳中微子质量项的压低,因此观测到这样的轻子数不守恒现象不仅能够证实中微子的马约拉纳属性,还可以限制中微子的质量。目前欧洲的GERDA实验、日本的KamLAND-Zen实验和美国的EXO-200实验代表了实验的最好水平,其对马约拉纳中微子质量项的限制精度达到了一百毫电子伏左右。下一代的实验将有希望把精度推进到几十毫电子伏。一旦中微子的马约拉纳性质被确定,那将是粒子物理学的一项重大突破。
令人遗憾的是,马约拉纳在发展了如今以他的名字命名的新费米子理论之后仅一年就神秘地失踪了。目前可以确认的记载是他购买了1938年3月25日从意大利西西里岛的巴勒莫前往那不勒斯的船票,而在这之前他从银行提走了自己所有的存款。但他却在那一天从人间蒸发,没有人知道他的行踪和下落。他的亲友、同事和后来的史学家猜测了如下几种可能性:
1)自杀;
2)逃往阿根廷,并在那里隐姓埋名地生活了二十几年;
3)遁入空门;
4)遭到绑架或杀害,以阻止他加入制造原子弹的项目;
5)沦为乞丐…
总之,马约拉纳的神秘失踪成了科学史上的一宗悬案,至今仍然困扰着很多人,而且不断有人宣称找到了他生或死的新证据,但似乎都不足为凭。
马约拉纳失踪后不久,他的导师恩里科·费米(Enrico Fermi)以一个大物理学家的独特眼光对自己的学生的智商和情商作了如下评价:
“…There are various kind of scientists in the world. The second-and third-rate ones do their best but do not get very far. There are alsofirst-rate people who make very important discoveries which are of capitalimportance for the development of the science. Then there are genius likeGalileo and Newton. Ettore Majorana was one of these. Majorana had greatergifts than anyone else in the world; unfortunately he lacked one quality whichother men generally have: plain common sense”
“…世上有各种各样的科学家。第二流和第三流的科学家竭尽全力,却无法走得很远。对科学的发展做出首要贡献的人是那些第一流的科学家。天才人物包括伽利略和牛顿,埃托雷·马约拉纳也是其中之一。马约拉纳比世人有更高的天分,但不幸的是他缺乏人人都具备的一种素质:朴素的常识。”
也许费米说得对,每一位天才都有让俗人无法理解的情怀。但无论如何,马约拉纳的传奇命运让神秘的中微子显得更加神秘。很多理论物理学家推测,幽灵一般的暗物质粒子或许也具有马约拉纳属性。果真如此的话,物质世界似乎处处存在着挥之不去的、来自马约拉纳的神秘气息。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
战国时期,风云变幻,诸侯争霸,齐宣王田辟彊作为齐国国君,在位期间留下了诸多故详情
西汉开国第一功臣萧何的结局,堪称中国古代权臣中罕见的“功成身退”样本。这位被详情
汉文帝刘恒(前203年—前157年)的登基,堪称西汉初年最富戏剧性的权力更迭详情
在华夏五千年的历史长河中,公主作为皇室血脉的象征,不仅承载着家族荣耀,更以美详情
在明末战火纷飞的年代,一位女将的名字与一种独特的兵器共同镌刻在历史长卷中——详情
在明末清初的乱世中,乌拉部公主阿巴亥以12岁稚龄嫁给43岁的努尔哈赤,这段充详情
在明朝初年的权力更迭中,朱棣与徐辉祖的矛盾堪称建文旧臣与永乐新朝碰撞的缩影。详情
杨坚与独孤曼陀的羁绊始于少年时期。两人自幼相识,定下婚约,杨坚曾深情许诺“此详情
在东汉末年的乱世风云中,韩嵩的名字与荆州牧刘表紧密相连。这位出身义阳的寒门学详情
在清朝九子夺嫡的激烈博弈中,一位瘸腿幕僚的名字始终与雍正帝的崛起紧密相连。邬详情
在战国七雄的权力棋局中,赵惠文王赵何堪称命运最跌宕的君主之一。这位18岁继位详情
在人类历史的长河中,穆罕默德无疑是一位具有深远影响力的人物。作为伊斯兰教的创详情
在南宋文学的璀璨星空中,赵师秀宛如一颗耀眼的明星,以其独特的诗风和卓越的才华详情
在金庸先生构建的武侠世界里,黄药师作为“东邪”,以其独特的性格、高深的武功和详情
在当代艺术领域,草间弥生无疑是一位极具影响力的艺术家。她以独特的波点艺术风格详情
东汉末年,天下大乱,诸侯割据,战火纷飞。在这风云变幻的时代,诸葛亮在隆中草庐详情
在十六国时期那段波澜壮阔的历史中,前秦政权曾一度闪耀于北方大地,而苻坚作为前详情
在中国古代历史长河中,春秋时期(公元前770年—公元前476年)的战争呈现出详情
1912年4月14日,号称“永不沉没”的泰坦尼克号在北大西洋撞上冰山,最终沉详情
日本战国时代群雄并起,织田信长、丰臣秀吉、德川家康三人因卓越的军事才能与政治详情
在金庸笔下的《笑傲江湖》中,华山派掌门之女岳灵珊的命运始终笼罩在谎言与阴谋的详情
西汉初年,汉高祖刘邦与吕后之女鲁元公主与赵王张敖的婚姻,不仅是政治联姻的典型详情
在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海详情
公元215年的合肥城下,一场被后世神话为"八百破十万"的详情
在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战详情
《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人详情
在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着详情
在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场详情
在中国三国时期的历史长河中,英雄辈出,战事频仍,其中一场以少胜多的经典战役—详情
长平之战,作为中国古代军事史上最早、规模最大、最彻底的大型歼灭战,其影响深远详情
在历史的长河中,总有一些战役以其独特的战略意义、惊心动魄的战斗过程和深远的历详情
战国时期,华夏大地上战火纷飞,其中邯郸之战无疑是这一系列战争中最为震撼的篇章详情
在中国古代历史上,战争是推动历史进程的重要力量。而在众多战争中,牧野之战无疑详情
在科学的世界里,有一种细胞被赋予了“不死”的名号,这就是海拉细胞。这种细胞源详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为“世界详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着“初中”,但这并不是他真详情
古人常说“不孝有三,无后为大”,而在皇权社会,皇帝不具备生育能力,可不仅仅是详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编详情
古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒详情
位于中国云南的九龙河瀑布群,被誉为“中国的尼亚加拉”,是中国最大的瀑布群。这详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流详情
湖北省,位于中国中部,素有“千湖之省”的美誉。全省湖泊众多,水域面积占总面积详情
在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清详情
在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以详情
在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对详情
在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的详情
王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作详情
《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。详情
在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物详情
在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记详情
在浩瀚的中华文化宝库中,“斯斯文文”这个词汇常被人们所提及。但是,它究竟是不详情
你知道“时时刻刻”这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的详情
在汉语成语的宝库中,“攘攘熙熙”以其形象生动的描绘,捕捉了人类社会繁忙混杂的详情